WCSP 2017 Preliminary Technical Program is now available.        WCSP 2017 is technically co-sponsored by IEEE and IEEE Communications Society.       The 9th International Conference on Wireless Communications and Signal Processing (WCSP 2017)      
Keynote 6

Minimizing Latency in Cloud Based Systems: Coding Over Parallel Servers

Ness B. Shroff

Professor, IEEE Fellow
The Ohio State University, USA


We are in the midst of a major data revolution. The total data generated by humans from the dawn of civilization until the turn of the new millennium is now being generated every two days. Driven by a wide range of data-intensive devices and applications, this growth is expected to continue its astonishing march, and fuel the development of new and larger data centers. In order to exploit the low-cost services offered by these resource-rich data centers, application developers are pushing computing and storage away from the end-devices and instead deeper into the data-centers. Hence, the end-users’ experience is now dependent on the performance of the algorithms used for data retrieval within the data-centers. In particular, providing low-latency services is critically important to the end-user experience for a wide variety of applications. Our goal has been to develop the analytical foundations and methodologies to enable cloud computing and storage solutions that result in low-latency services. A variety of cloud based systems can be modeled using multi-server, multi queue queueing systems with data locality constraints. In these systems, replication (or most sophisticated coding schemes) can be used to not only improve reliability but to also reduce latency. However, delay optimality for multi-server queueing systems has been a long-standing open problem, with limited results usually in asymptotic regimes. The key question is can we design resource allocation schemes that are near optimal in distribution for minimizing several different classes of delay metrics that are important in wireless web and cloud based services? In this talk, I will overview some of our recent research efforts at solving this problem, provide some key design principles, and outline a set of what I believe are important open problems.


Ness B. Shroff received his Ph.D. degree from Columbia University, NY in 1994 and joined Purdue university immediately thereafter as an Assistant Professor. At Purdue, he became Professor of the school of Electrical and Computer Engineering in 2003 and director of CWSA in 2004, a university-wide center on wireless systems and applications. In July 2007, he joined the ECE and CSE departments at The Ohio State University, where he holds the Ohio Eminent Scholar Chaired Professorship of Networking and Communications. From 2009-2012, he also served as a Guest Chaired professor of Wireless Communications at Tsinghua University, Beijing, China, and currently holds an honorary Guest professor at Shanghai Jiaotong University in China and visiting position at the Indian Institute of Technology, Bombay.

Dr. Shroff's research interests span the areas of communication, networking, storage, cloud, recommender, social, and cyberphysical systems. He is especially interested in fundamental problems in learning, design, control, performance, pricing, and security of these complex systems. He currently serves as editor-at-large in the IEEE/ACM Trans. on Networking, and as senior editor of the IEEE Transactions on Control of Networked Systems. He also serves on the editorial boards of the IEEE Network Magazine, and the Network Science journal. He has served on the technical and executive committees of several major conferences and workshops. For example, he was the technical program co-chair of IEEE INFOCOM'03, the premier conference in communication networking, the technical program co-chair of ACM Mobihoc 2008, the General co-chair of WICON'08, and the conference chair of IEEE CCW'99. He has served as a keynote speaker and panelist on several major conferences in these fields. Dr. Shroff was also a co-organizer of the NSF workshop on Fundamental Research in Networking in 2003, and the NSF workshop on the Future of Wireless Networks in 2009.

Dr. Shroff is a Fellow of the IEEE, and a National Science Foundation CAREER awardee. His papers have received numerous awards at top-tier venues. For example, he received the best paper award at IEEE INFOCOM 2006, IEEE INFOCOM 2008, and IEEE INFOCOM 2016, the best paper of the year in the journal of Communication and Networking (2005) and in Computer Networks (2003). He also also received runner-up awards at IEEE INFOCOM 2005 and IEEE INFOCOM 2013. In addition, his papers have received the best student paper award (from all papers whose first author is a student) at IEEE WIOPT 2013, IEEE WiOPT 2012, and IEEE IWQoS 2006. Dr. Shroff is on the list of highly cited researchers from Thomson Reuters ISI (previously ISI web of Science) in 2014 and 2015, and in Thomson Reuters Book on The World's Most Influential Scientific Minds in 2014. He received the IEEE INFOCOM achievement award for seminal contributions to scheduling and resource allocation in wireless networks, in 2014.

Copyright @ WCSP2017. All rights reserved. 苏ICP备09019353号