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Abstract—Compared with the Wi-Fi Received Signal Strength
(RSS) commonly-used for the indoor localization, the Channel
State Information (CSI) can be used for precise ranging to achieve
the high Wi-Fi indoor localization accuracy since it includes the
fine-grained physical-layer information such as the amplitude and
phase of each subcarrier during the signal transmission. Due to
the lack of the theoretical analysis of the localization error bound
in the existing CSI ranging-based localization methods, it is not
easy to compare the ideal performance of different localization
methods. Therefore, this paper proposes a CSI ranging-based
Wi-Fi indoor localization error bound analysis method, which
is based on the indoor signal propagation model to derive out
the CSI ranging-based localization error bound by considering
the relationship between the localization accuracy and the path
loss, shadow fading, multipath effect and asynchronous effect.
Besides, through the experimental comparison, this paper an-
alyzes the difference between the actual localization error and
the derived localization error bound, as well as discusses the
impact of different experimental parameters on the localization
performance.

Index Terms—Indoor localization, channel state information,
Wi-Fi, localization error bound, ranging

I. INTRODUCTION

At present, the Global Positioning System (GPS) and the

cellular positioning system are two relatively mature outdoor

positioning systems, which can provide the accurate and

reliable location information for outdoor users. In contrast, the

complexity of indoor structures, the movement of people, and

the impact of obstructions cause indoor users to fail to receive

signals from the GPS and cellular base stations effectively.

The Wi-Fi indoor fingerprint localization system based on

Received Signal Strength (RSS) has become the mainstream

of indoor localization systems due to its wide signal coverage,

low hardware requirement, and simple network deployment.

However, due to the multipath effect in the indoor environ-

ment, the received RSS signal is unstable, the cost of building

and maintaining the fingerprint database is relatively high, and

the application of the system in the actual indoor environment

is greatly restricted.

In response to the above problems, Wi-Fi indoor localization

systems based on Channel State Information (CSI) ranging are

beginning to gain the popularity. Compared with the RSS, the

CSI contains finer-grained physical-layer information such as

the amplitude and phase of each subcarrier, so it can be used

for the Wi-Fi indoor localization and provide more accurate

and stable localization results [1]. Due to the path loss, the

shadow fading and multipath effect existing in the indoor

environment cause the poor localization accuracy, Meanwhile,

the clock asynchronous effect of hardware equipment is one of

the main factors affecting the CSI-based localization accuracy,

which is incurred by the crystal oscillating circuits in different

devices and will incur a sampling frequency offset, so we need

to analyze the impact of the above factors on the localization

accuracy. To summarize, the two main contributions of this

paper are listed as follows.

• The concept of the Cramer-Rao Lower Bound (CRLB) in

the frequency domain is used to analyze the CSI ranging-

based localization error, which solves the problem that the

CRLB cannot be obtained without the Probability Density

Function (PDF) of the CSI signal in the time domain.

• By considering the relationship between the localization

accuracy and the path loss, shadow fading, multipath

effect and asynchronous effect, the CSI ranging-based

localization error bound is derived.

The rest of this paper is organized as follows. Some related

works on the CSI indoor localization and localization error

analysis are surveyed in Section II. The proposed system

model is described in detail in Section III. Section IV derives

out the closed-form expression of the proposed CRLB, and

then Section V shows the related experimental results. Finally,

Section VI concludes this paper and provides some future

directions.
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II. RELATED WORK

Due to the rich physical layer information and high stability

of the CSI, more and more scholars have conducted research

on indoor localization methods based on CSI ranging. Authors

in [2] use the channel splicing technology to continuously

measure the CSI of multiple subcarriers in the channel co-

herence time, and then achieve the sub-meter-level ranging

accuracy. Authors in [3] take the First Fresnel Zone (FFZ)

as the prerequisite, establish the Power Fading Model (PFM)

equation, and then estimate the target position by solving the

PFM equation for all multipath signals. Authors in [4] use

the Broadband Angle Ranging (BAR) method to estimate the

propagation distance of the CSI signal, and then determine the

target position by the trilateration method.

Specifically, the localization accuracy is affected by the

path loss, shadow fading, and multipath effect in the indoor

environment. Then, it is necessary to analyze the impact of the

above factors on the localization performance. Authors in [5]

derive out the Time of Arrival (TOA)-based localization error

bound in the time domain, but it is obtained by an ideal signal

propagation model and it is difficult to be applied to most

actual indoor environments. Authors in [6] propose an indoor

signal propagation model considering the multipath effect,

by which the impact of the shadow fading and number of

anchor nodes on the CSI localization error bound is analyzed.

However, in this model, the multipath effect is simplified as

an ideal Gaussian random variable, and thereby the diversity

of the multipath signal is not considered, which makes the

localization error bound deviate from the actual localization

error significantly.

In this paper, considering the relationship between the

indoor localization error bound and the environment factor

such as the path loss, multipath effect, and noise power as well

as the device factor such as the AP number, bandwidth and

asynchronous effect, we derive out the closed-form expression

of the CSI ranging-based indoor localization error bound,

which can be used to investigate the ideal performance of the

existing indoor localization methods.

III. SYSTEM MODEL

A. CSI signal model

Considered as the physical-layer information of the signal,

the CSI contains the amplitude and phase information of each

subcarrier that can be used to describe the attenuation and

frequency deviation characteristics of the signal propagating

from the transmitter to receiver. The signal amplitude atten-

uation occurs during the propagation process, and it is also

affected by the multipath effect due to obstacles such as the

floor, wall, and ceiling. Meanwhile, by considering the slow-

speed pedestrian movement within the indoor environment, the

Doppler frequency deviation of the signal ranging from 10 to

20 Hz can be ignored. Thus, the waveform of the received

signal in the time domain can be represented as

r(t) =

l∑
i=1

a(i)s(t− τ (i)) + z(t) (1)

where s(t) is the transmitted signal waveform, l is the number

of propagation paths, a(i) and τ (i) stand for the amplitude

and propagation delay of the received signal respectively on

the i-th propagation path, and z(t) is the noise following the

Gaussian distribution with the mean 0 and variance δ2. After

conducting the Analog-to-Digital Converter (ADC) transfor-

mation, the waveform of the received signal is converted into

r(nT ) =

l∑
i=1

a(i)s(nT − τ (i)) + z(nT ) (2)

with n = 1, · · · ,L, where T and L stand for the sampling

period and number of sampling points respectively. Based on

this, the waveform of the received signal at the m-th (m =
1, · · · ,N ) Access Point (AP) can be represented as

rm(nT ) =

l∑
i=1

a(i)m s(nT − τ (i)m ) + z(nT ) (3)

with n = 1, · · · ,L, where a
(i)
m and τ

(i)
m stand for the amplitude

and propagation delay of the received signal respectively on

the i-th propagation path at the m-th AP. Then, by conducting

the L-point Discrete Fourier Transform (DFT) of rm(nT ),
the corresponding waveform of the received signal in the

frequency domain can be obtained as

Rm(k) =

l∑
i=1

a(i)m S(k)e
−j2πkτ

(i)
m

LT + η(k) (4)

with k = 0, · · · , L−1, where S(k) and η(k) stand for power

spectrums of the transmitted signal and the noise following

the Gaussian distribution with the mean 0 and covariance Lδ2

respectively.

B. Error bound analysis model

According to the Fisher information theory [7], the CRLB

is defined as the inverse of the Fisher Information Matrix

(FIM), which describes the variance of the estimated value of

unknown parameters. Different from the previous studies on

the CSI ranging-based indoor localization error bound using

the time-domain model [8], we rely on the frequency-domain

model shown in (4), to derive out the error bound with the

benefit of making the waveform information consistent with

the practical capability of the Intel 5300 toolkit used for

receiving the CSI. To achieve this goal, we set the expec-

tation of the vector of X = (Rm(0), · · · , Rm(L− 1))
T

as

μ =
(
Rm(0), · · · ,Rm(L− 1)

)T

and the vector of parameters

to be estimated as the 2-dimensional (2-D) coordinate of the

pedestrian θ=(θ1, θ2)
T

, where Rm(k) is the expectation of

Rm(k) and T is the transpose operation. and then the element

on the i-th row and j-th column in the FIM with respect to θ
is then calculated as

Iij = 2Re

[
∂μH

∂θi
Σ−1 ∂μ

∂θj

]
, i, j = 1, 2 (5)

where Re and H are real-part and matrix conjugate transpose

operations, Σ = Lδ2E is the covariance matrix of X , and E
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is the identity matrix. Based on this, the error bound equals

to Vθ = (I11+I12)
/(

I11I22 − I212
)
.

IV. CRLB ANALYSIS

A. Error Estimation with Clock Synchronization

According to (4), the parameters to be estimated in

the frequency domain expression of the received signal

waveform can be represented as θ =
(
a
(1)
1 , τ

(1)
1 , · · · ,

a
(l)
1 , τ

(l)
1 , · · · , a(1)N , τ

(1)
N , · · · , a(l)N , τ

(l)
N

)T

. To derive out the

CSI ranging-based indoor localization error bound, we propose

the association of parameters. Firstly, we set 2-D coordinates

of the target and the m-th AP as (x, y) and (xm, ym) re-

spectively, and calculate the distance between them as dm =√
(xm − x)

2
+ (ym − y)

2
.

According to the random weighting theory [6], we have

τ (i)m =
λ
(i)
m

√
(xm − x)

2
+ (ym − y)

2

v
(6)

where v is the speed of light and λ
(i)
m (∈ [1, 20)) is the

weighting factor of the i-th propagation path at the m-th AP,

and meanwhile

a(i)m =
a0

λ
(i)
m

√
(xm − x)

2
+ (ym − y)

2
εp

(i)
m (7)

where a0 is the amplitude of the received signal at the location

with 1 m from the transmitter (or called the reference location),

ε (∈ (0, 1)) is the environment coefficient, and p
(i)
m is the

number of reflections of the signal on the i-th propagation

path at the m-th AP.

According to (6) and (7), we can find that the estimation

of θ is equivalent to the estimation of θ′ = (x, y), then

the waveform of the received signal at the m-th AP can be

represented as

rm(t) =
l∑

i=1

a0ε
p(i)
m

λ
(i)
m dm

s(t− λ
(i)
m dm
v

) + z(t) (8)

By conducting the L-point DFT of rm(t), the corresponding

frequency domain can be obtained as

Rm(k) =

l∑
i=1

a0ε
p(i)
m S(k)e

−j2πkλ
(i)
m dm

LTv

λ
(i)
m dm

+ η(k) (9)

From (5), by setting the expectation of the vector of ob-

servations X =
(
R

(i)
m (0), · · · , R(i)

m (k), · · · , R(i)
m (L− 1)

)T

as μ =
(
R

(i)
m (0), · · · , R(i)

m (k), · · · , R(i)
m (L− 1)

)T

, where

R
(i)
m (k) is the expectation of R

(i)
m (k), the FIM with respect

to θ′ is constructed as

Iθ′ =
2a20
Lδ2

M∑
m=1

HmDm (10)

where

Hm =

l∑
i=1

L−1∑
k=0

|S(k)|2( 1

d4m( λ
(i)
m

εp
(i)
m

)
2 +

4π2k2

L2v2T 2d2m( 1

εp
(i)
m

)
2 )

(11)

Dm =

[
cos θ2m cosθm sin θm

sin θmcosθm sin θ2m

]
(12)

and |S(k)| is the amplitude of the transmitted signal.

Finally, the CSI ranging-based indoor localization error

bound is derived as (13).

B. Error Estimation with Clock Asynchronization

The phase deviation of the frequency signal introduced

by the difference of hardware devices causes a fixed time

offset τ0 between the actual sampling time of the AP and the

optimal sampling time, that is, the clock asynchronous effect.

According to (6)-(8), we can represent the waveform of the

received signal with the asynchronous effect at the m-th AP

as

r̃m(nT ) =

l∑
i=1

a(i)m s(nT − τ (i)m − τ0) + z(t), (14)

where n = 1, · · · ,L. Then, by conducting the L-point Dis-

crete Fourier Transform (DFT) of r̃m(nT ), the corresponding

waveform of the received signal in the frequency domain can

be obtained as

R̃m(k) =

l∑
i=1

a(i)m S(k)e
−j2πk(τ(i)

m +τ0)
LT + η(k), (15)

where k = 0, · · · , L − 1. In this case, the vector of

parameters to be estimated can be obtained as θ̃ =(
a
(1)
1 , τ

(1)
1 , · · · , a(l)1 , τ

(l)
1 , · · · , a(1)N , τ

(1)
N , · · · , a(l)N , τ

(l)
N , τ0

)T

.

There are not only parameters x and y to be estimated for

target positioning, but also the time offset τ0 caused by the

clock asynchronous effect.

Then, according to (5), the FIM with respect to θ̃ is

constructed as

Iθ̃ =

[
A B
BT C

]
, (16)

where

A=

⎡
⎢⎢⎣

M∑
m=1

Hm cos θ2m
M∑

m=1
Hm cos θm sin θm

M∑
m=1

Hm sin θm cos θm
M∑

m=1
Hm sin θ2m

⎤
⎥⎥⎦ ,

(17)

B=

[
M∑

m=1

Ym cos θm
v

M∑
m=1

Ym sin θm
v

]T
, (18)

C=
M∑

m=1

Ym, (19)

where Ym=
l∑

i=1

L−1∑
k=1

|S(k)|2 4π2(εp
(i)
m )

2

k2

(λ
(i)
m )

2
d2
mL2T 2

.

Since we are interested in the location information of the

target, which can be obtained from the equivalent Fisher

3



Vθ′ = tr
{
I−1
θ′

}
=

Lδ2

2a20

M∑
m=1

Hm

(
M∑

m=1
Hmcos2θm)(

M∑
m=1

Hmsin2θm)− (
M∑

m=1
Hm cos θm sin θm)

2 (13)

information matrix (EFIM), we rely on [9] to construct the

EFIM with respect to θ̃ as

IE=A−BC−1BT, (20)

which has the property that
[
I−1

θ̃

]
2×2

= I−1
E , where [·]n×n

represents the submatrix of the first n rows and first n columns

of matrix, and then the CSI-based indoor localization error

bound with the asynchronous effect considering the pedestrian

motion is derived as

Vθ̃ = tr
{
I−1
E

}
=

Lδ2

2a20

I4

I1I2 − I3
2 , (21)

where I1 =
N∑

m=1
Hmcos2(θm) −

(
N∑

m=1
Ym cos θm

)2

v2
N∑

m=1
Ym

, I2 =

N∑
m=1

Hmsin2(θm) −
(

N∑
m=1

Ym sin θm

)(
N∑

m=1
Ym sin θm

)

v2
N∑

m=1
Ym

, I3 =

N∑
m=1

Hm sin θm cos θm−
(

N∑
m=1

Ym cos θm

)(
N∑

m=1
Ym sin θm

)

v2
N∑

m=1
Ym

, I4 =

N∑
m=1

Hm −
(

N∑
m=1

Ym cos θm

)2

+

(
N∑

m=1
Ym sin θm

)2

v2
N∑

m=1
Ym

.

V. EXPERIMENTAL RESULTS

As shown in Fig. 1, in a real indoor environment with

dimensions of 49.3 m by 17.8 m, we calculate the CSI ranging-

based localization error bound, and then compare it with the

actual localization error by the method in [10] to verify the

effectiveness of the proposed method. There are in total 8

APs (i.e., the Intel 5300 toolkit, notated from AP1 to AP8)

randomly deployed in this environment to receive the signal

from the transmitter (i.e., the TP-LINK TL-WR2041N) at the

target location. For simplicity, we assume that the noise power

is from -95 dBm to -75 dBm, the received signal power at the

reference location is -40 dBm, and the bandwidth varies from

60 MHz to 300 MHz.

Fig. 2 shows the actual localization error and proposed

localization error bound with different noise power. This result

shows that with the variation of the noise power, both of them

have the similar variation trend, which verifies the effective-

ness of the proposed localization error bound in describing

the CSI ranging-based Wi-Fi indoor localization performance.

However, due to the complexity and unpredictability of the

actual environmental noise, there is a certain difference in the

absolute value of the actual localization error and proposed

localization error bound.

49.3m

17.8m

AP Room 1 Corridor Target

AP1

AP2

AP3

AP4
AP5

AP6AP8

AP7

Room 2 Room 3 Room 4

Fig. 1. Environmental layout.

0 -100 -96 -92 -88 -84 -80
Noise power (dBm)

0

0.5

1.0

1.5

2.0

Lo
ca

liz
at

io
n 

er
ro

r
 (m

)

Actual Error  (AP=3)
 (AP=5)
 (AP=8)

Error bound

0 -100 -96 -92
0

0.1

0.2

 

Actual Error
Actual Error

 (AP=3)
Error bound
Error bound

 (AP=5)
 (AP=8)

Lo
ca

liz
at

io
n 

er
ro

r  (
m)

Noise power  (dBm)

Fig. 2. Error bound vs. actual error with different noise power.

Fig. 3 gives the actual localization error and proposed

localization error bound with different bandwidth. It can

be observed that with the increase of the bandwidth, both

the actual localization error and proposed localization error

bound are in a downward trend, especially in the case of

the small bandwidth, the variation trend is obvious since the

increase of the bandwidth improves the time resolution, and

consequently enhances the direct path resolution capability at

the AP. In addition, the effect of the increased bandwidth

on the localization performance shows a convergence trend,

and in the case of the large bandwidth, the variation of the

bandwidth does not have significant effect on the localization

performance.

As shown in Fig. 4, which compares the actual localiza-

tion error with proposed localization error bound in different

indoor environments. This result indicates that the proposed

localization error bound has the similar variation trend to

the actual localization error, and meanwhile it can effectively

characterize the relative relationship of the localization error

in different indoor environments.
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Fig. 3. Error bound vs. actual error with different bandwidth.
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Finally, Fig. 5(a) and Fig. 5(b) show the localization error

bound and actual localization error with the clock synchro-

nization and asynchronization respectively. It can be observed

that the clock asynchronous effect has a negative impact on

the localization accuracy especially for the actual environment.

Therefore, the clock asynchronous effect should be eliminated

as much as possible for the sake of achieving the high-

precision localization.

VI. CONCLUSION

This paper derives out the CSI ranging-based Wi-Fi indoor

localization error bound and analyzes the impact of different

factors on the localization error bound. Experimental results

show that given the noise power, the increase of the AP

number and bandwidth can reduce the localization error.

Meanwhile, the change of the indoor environment and clock

asynchronization also affect the localization performance. In

the future, we will focus on multipath signal modeling and an-

alyzing the impact of the device difference on the localization

error bound.
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